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Simultaneous brain structure segmentation in magnetic resonance
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Abstract

In brain magnetic resonance imaging (MRI) examinations, rapidly acquired two-dimensional (2D) T1-weighted sagittal
slices are typically used to confirm brainstem atrophy and the presence of signals in the posterior pituitary gland. Image
segmentation is essential for the automatic evaluation of chronological changes in the brainstem and pituitary gland. Thus,
the purpose of our study was to use deep learning to automatically segment internal organs (brainstem, corpus callosum,
pituitary, cerebrum, and cerebellum) in midsagittal slices of 2D T1-weighted images. Deep learning for the automatic
segmentation of seven regions in the images was accomplished using two different methods: patch-based segmentation
and semantic segmentation. The networks used for patch-based segmentation were AlexNet, Googl.eNet, and ResNet50,
whereas semantic segmentation was accomplished using SegNet, VGG16-weighted SegNet, and U-Net. The precision and
Jaccard index were calculated, and the extraction accuracy of the six convolutional network (DCNN) systems was evalu-
ated. The highest precision (0.974) was obtained with the VGG16-weighted SegNet, and the lowest precision (0.506) was
obtained with ResNet50. Based on the data, calculation times, and Jaccard indices obtained in this study, segmentation on a
2D image may be considered a viable and effective approach. We found that the optimal automatic segmentation of organs
(brainstem, corpus callosum, pituitary, cerebrum, and cerebellum) on brain sagittal T1-weighted images could be achieved
using SegNet with VGG16.
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Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf

1 Introduction

Magnetic resonance (MR) images are essential tools and
indispensable for diagnosing many medical lesions. In
particular, MR imaging (MRI) is excellent for diagnosing
brain lesions because it can depict soft tissue with high
contrast. MR brain images are often segmented for diag-
nosis and analysis. Image segmentation is one of the most
active areas of research, and the automation of segmenta-
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tion has recently emerged as a major challenge. When seg-
mentation is performed using conventional semi-automatic
methods, machine learning techniques such as random forest
or k-means have been applied. In a previous segmentation
study using the BRATS dataset (a common dataset for evalu-
ating the accuracy of brain tumor segmentation techniques),
Tustison reported that random forest provided the best per-
formance [1].

Due to the increasing popularity of deep learning
techniques, this approach has recently become a primary
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candidate for automatic segmentation methods. Moreover,
deep learning is widely used for classification problems
that show limited success with traditional machine learn-
ing approaches, and also for detailed object recognition
from images. In addition to its general applications, such
as automatic recognition of faces and cars, deep learning
has been applied in various ways to medical problems and
has yielded high-quality results. Several studies have shown
that deep learning improves segmentation accuracy in MR
images [2—4].

Most previous studies on brain organ segmentation have
been performed using three-dimensional assessment (3D
images) [5, 6]. Mlynarski et al. segmented eight regions,
including the pituitary gland and brainstem, from axial
images using a dataset of 3D contrast-enhanced T1-weighted
images and a network based on U-Net [7]. Chen et al. simi-
larly used 3D images and U-Net to segment six regions,
including the brainstem [8]. Segmentation using 3D images
has produced satisfactory accuracy in previous studies
because 3D images provide superior spatial robustness
versus 2D images [9]. However, depending on the GPU
specifications, assessments based on 3D images involve
large amounts of data and prolonged calculation times [9].
Furthermore, to be clinically useful, 3D images of the brain
often require longer scan times than 2D images [10].

Most routine clinical assessments performed with brain
MRI scans use 2D images, which can be acquired in a short
time. For example, 2D T1-weighted sagittal slices are typi-
cally used to confirm brainstem atrophy and the presence
of signals in the posterior pituitary gland. Although sag-
ittal images contain a substantial amount of information
that is useful for diagnosing brain stem and pituitary gland
lesions, few studies have focused on these images. The avail-
able datasets for deep learning studies of brain segmenta-
tion mainly contain axial images [7, 8]. Using conventional
methods without deep learning, Lee et al. used thresholding
to separate the cerebrum (the largest region on the sagittal
images), from other brain regions in a 3D image [11]. In
addition, Rohni et al. reported that it is possible to classify
Alzheimer’s disease by segmenting the brainstem from a
2D sagittal image, and that 2D images can be segmented
relatively simply, quickly, and easily [12]. Therefore, we
might expect that these types of segmentations could be
more easily and accurately performed using deep learning,
and would consequently be useful in clinical practice. For
example, establishing a computerized technique to evaluate
the pituitary gland and brainstem objectively and automati-
cally would reduce the interpretation load for radiologists
making such assessments.

Accordingly, the purpose of our study was to use deep
learning to automatically recognize internal organs (brain-
stem, corpus callosum, pituitary, cerebrum, and cerebellum)
on one midsagittal slice of 2D T1-weighted images. By
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applying several networks for segmentation, we investigated
the most suitable network for simultaneous segmentation.

2 Methods
2.1 Overview

T1-weighted midsagittal images were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base (adni.loni.usc.edu) [13]. ADNI is a database created to
test whether the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD) can be measured
by combining MRI, positron emission tomography (PET),
and clinical assessment (for up-to-date information, see
www.adni-info.org). Deep learning for automatic segmenta-
tion of seven regions (brainstem, corpus callosum, pituitary,
cerebrum, cerebellum, other, and air) was performed on the
images using two different methods: patch-based segmenta-
tion and semantic segmentation. The networks used for the
patch-based segmentation method were AlexNet [14], Goog-
LeNet [15], and ResNet50 [16]. Three types of semantic
segmentation methods were used: SegNet [17], SegNet with
a VGG16-weighting factor [18], and U-Net [19]. The preci-
sion and Jaccard index were calculated after segmentation
was completed, and the extraction accuracy of the six DCNN
systems was evaluated. A flowchart of the study protocol
is shown in Fig. 1. MATLAB R2019a 9.6.0 (MathWorks,
Massachusetts, USA) software was used for the analysis.
The graphics processing unit (GPU) was a GEFORCE GTX
1070-TI (NVIDIA, California, USA).

2.2 Dataset

T1-weighted brain images were obtained from the ADNI
database. Midsagittal slices were reconstructed from 3D
axial image data. The number of original images was 450,
and the image size was 256 X 256 pixels. Five training and
test datasets were created by changing the image combina-
tions. The 450 images were divided into 400 training images
and 50 test images. Five sets of 50 test images were selected
from the 450 images so that the images did not overlap. The
remaining 400 images were used as the training images.

2.3 Region segmentation by deep learning

Region segmentation using deep learning can be performed
using two different approaches. In patch-based segmenta-
tion, multiple patch images are extracted from one image,
and a patch set is learned by classification networks, such
as AlexNet, VGG16, or GoogLeNet. Patch-based methods
have proven effective for labeling brain structures [20, 21].
Segmentation can be performed by returning the trained
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Fig.1 A flowchart of the method outline is shown below. Deep learn-
ing for automatic recognition of the different regions in images was
performed using two different methods: patch-based segmentation

network’s judgment based on the patches of the test images
to the original image. The second approach is semantic seg-
mentation [22, 23], which is the predominant method used
for segmentation. Networks such as SegNet and U-Net were
developed for semantic segmentation. These architectures
can classify all the pixels that constitute the image and deter-
mine the regions to which they belong.

2.3.1 Patch-based segmentation

1) Patch images of 61 X 61 pixels were extracted from the
original images of 256 x 256 pixels. The patch image
interval was set to seven pixels. The optimal patch size
was selected by considering the maintenance of informa-
tion around the target organ and the number of images
for segmentation.

2) Based on the central pixel, the patch images were classi-
fied into seven categories (brainstem, corpus callosum,
pituitary gland, cerebrum, cerebellum, other, and air)
and stored in their respective folders. When all patch
images extracted from the original training images were
used, we found a 200-fold difference between the pitui-
tary region with the smallest number and other regions
with the largest number. We determined that this result
impeded efficient learning; therefore, we used 1000—
2000 random patch images for each category (brainstem,
corpus callosum, pituitary gland, cerebrum, cerebel-
lum, other, and air). The patch images were randomly
selected from all extracted patches in each category
using a computer program. However, the pituitary area
yielded fewer than 1000 patch images; hence, all images
obtained for this region were used. All the patch images
extracted from the test dataset images were evaluated.

and semantic segmentation. After segmentation, the precision and
Jaccard index were calculated, and the extraction accuracy of the six
dynamic conditional convolutional network systems was evaluated

3) The three networks (AlexNet, GoogLeNet, and
ResNet50) that were previously demonstrated effective
for classification were fine-tuned using five training
datasets. The pre-trained networks AlexNet, GoogleNet,
and ResNet50 were trained with tens of thousands of
general images and distributed using MATLAB.

4) The trained networks were evaluated using the five data-
sets. The numbers of patch images in the five datasets
are listed in Table 1.

2.3.2 Semantic segmentation

1) The supervised images were created by manually labe-
ling seven regions (brainstem, corpus callosum, pitui-
tary, cerebrum, cerebellum, other, and air) on the origi-
nal image. Supervised images were created manually
using a tool called Image Labeler, which is provided in
MATLAB. Image Labeler is an application for defin-
ing pixel ROI labels that pair with images. The labeling
of supervised images was confirmed by a Radiographer
with more than 20 years of experience. Augmentation
(random shift of 10 pixels in the x and y directions and
scaling of 0.8-and 1.2 times) was performed to compen-
sate for the small number of trainings with 400 images.

2) The five training datasets were trained on a segmentation
network (SegNet, U-Net, and SegNet with a VGG16-
weighting factor). Pre-training of SegNet and U-Net was
not performed. SegNet with a VGG16-weighting factor
is a network in which the initialized weights of a pre-
trained VGG16 are applied to the SegNet encoder.

3) The trained networks were evaluated using five test data-
sets.
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Table 1 The number of patch

. . Brainstem  Corpus Pituitary =~ Cerebrum  Cerebellum  Other Air
images in the dataset for patch- Callosum
based segmentation
Set1 1569 1575 1061 1465 1510 1887 1819
Set2 1619 1574 1109 1585 1369 1833 1681
Training  Set3 1655 1509 1048 1594 1544 1816 1648
(n=400) Set4 1517 1312 1040 1558 1437 1735 1720
Set5 1542 1512 1055 1423 1624 1452 1580
Set1 1461 832 168 10,341 1508 20,871 4019
Set2 1467 774 120 10,156 1480 21,784 3419
Test Set3 1550 979 181 10,662 1505 21,154 3169
(n=50) Set4 1389 1030 189 10,289 1516 20,656 4131
Set5 1417 902 174 10,308 1447 20,933 4017

Table 2 Learning parameters of MATLAB for each network

Max epochs Mini Initial learn rate
batch size

AlexNet 5 8 0.0001
GoogLeNet 5 8 0.0001
ResNet50 5 8 0.0001

SegNet 100 4 0.001

SegNet with VGG16- 100 4 0.001

weighting factor
U-Net 100 4 0.05

2.4 Parameters for deep learning

Table 2 lists the parameters used for the network learning.
The optimization function utilized a stochastic gradient
descent for all networks. The stochastic gradient descent
method optimizes and updates the parameters sequen-
tially. The number of epochs, mini-batch size, and initial
learning rate were adjusted on the basis of the standard
values specified in MATLAB to fit the datasets used in
this experiment.

2.5 Evaluation

The test dataset was evaluated using 50 images. The overall
classification accuracy was evaluated using the confusion
matrix, and the precision and Jaccard index were calculated.
The precision (1) and Jaccard index (2) were obtained using
the following equations,

Precision = L(l)
(TP + FP)
Jaccard index = LQ)
TP + FP + FN

where TP, FP, and FN are true positive, false positive,
and false negative.

3 Results

Table 3 lists the precision values, and Table 4 lists the
Jaccard indices of the six networks. Both are the average
values for the learning and evaluation of the five datasets.
Typical images of the segmentation results are shown in
Figs. 2, 3. The indicated images were randomly chosen
and tested using trained networks. The network with the

Table 3 The average precision

Brainstem  Corpus Callosum  Pituitary = Cerebrum  Cerebellum  All image
values for each network

AlexNet 0.693 0.566 0.350 0.811 0.740 0.632
GoogLeNet 0.663 0.468 0.271 0.919 0.727 0.610
ResNet50 0.499 0.341 0.147 0.896 0.645 0.506
SegNet 0.973 0.958 0.979 0.917 0.978 0.961
SegNet with 0.981 0.972 0.984 0.958 0.983 0.976

VGG16-weighting

factor
U-Net 0.880 0.584 0.001 0.746 0.626 0.567
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Table 4 The average Jaccard

R Brainstem  Corpus Callosum  Pituitary = Cerebrum  Cerebellum  All image
indices in each network
AlexNet 0.652 0.538 0.306 0.850 0.673 0.604
GoogLeNet 0.649 0.459 0.269 0.847 0.703 0.585
ResNet50 0.678 0.517 0.310 0.865 0.733 0.481
SegNet 0.637 0.599 0.333 0.861 0.663 0.618
SegNet with 0.681 0.652 0.415 0.894 0.770 0.682
VGG16-weighting
factor
U-Net 0.613 0.512 0.001 0.727 0.376 0.446

Example (1)

Example (2)

Example (3)

(A)

(B)

(€) (D) (E)

Fig.2 Three examples of patch-based segmentation results are shown. A is the original image and (B) is the teacher image corresponding to the
original image, whereas (C, D, and E) are the result images obtained with AlexNet, GoogLeNet, and ResNet50, respectively

highest precision (0.974) was SegNet with the VGG16-
weighting factor, whereas the lowest precision (0.506) was
obtained with ResNet50. Assessments for the other regions
demonstrated the highest precision, whereas those for the
pituitary region demonstrated the lowest precision. The
network with the highest Jaccard index (0.682) was SegNet
with the VGG16-weighting factor, and the network with
the lowest Jaccard index (0.446) was U-Net. The air region
exhibited the highest Jaccard index, whereas the pituitary
region exhibited the lowest Jaccard index.

The training time was approximately 20 min for
AlexNet, 65 min for GoogLeNet, 120 min for ResNet50,
55 min for SegNet, 70 min for U-Net, and 90 min for
SegNet with the VGG16-weighting factor. AlexNet had
eight layers, GoogLeNet had 22 layers, and ResNet50 had
50 layers. The processing time increased depending on
the model size. SegNet with VGG16 set as the encoder

exhibited a longer processing time than SegNet without
VGG16 and U-Net.

4 Discussion

Among the methods compared in this study, SegNet with the
VGG16-weighting factor demonstrated the highest precision
and Jaccard index. VGG16 uses a pre-trained network and
applies its weight to the SegNet encoder utility. The trans-
fer learning function of VGG16 can be used to obtain high
scores, even with a small amount of learning data. This find-
ing is consistent with a previous study [24], in which Swati
et al. used pre-trained VGG19 to discriminate brain tumor
types in MR images and obtained higher accuracy than that
shown by other methods. Guo et al. [25] also reported that
applying Vgg weights to SegNet for polyp segmentation
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Example (1)

Example (2)

Example (3)

Fig.3 Three examples of semantic segmentation results are shown. A is the original image and (B) is the teacher image corresponding to the
original image. C, D, E are the result images obtained with SegNet, SegNet with VGG16-weighting factor, and U-Net

improved its accuracy. SegNet and U-Net, which have not
been pre-trained, may not be able to adapt to a small number
of trainings.

In assessments based on patch segmentation, no sig-
nificant differences were observed in the precision and
Jaccard index when AlexNet and GoogLeNet were used,
and ResNet50 demonstrated lower values than the other
two networks. Generally, the deeper the network, the better
the extraction accuracy. However, in studies using medical
images, networks with a shallower layer yielded superior
results when compared to those with a deeper layer. Saikia
et al. compared networks for automatic diagnosis based on
fine-needle aspiration cytology (FNAC) findings. In their
study, GoogLeNet, which has the shallowest layer among
the networks considered in this study, yielded higher accu-
racy than ResNet50 and VGG16 [26]. In addition, Lee et al.
reported a comparative study of networks for automatically
distinguishing AWLwvf (angiomyolipoma without vis-
ible fat) from renal cell carcinoma (RCC). They found that
AlexNet demonstrated the highest accuracy, followed by
VGGNet, ResNet, and GoogLeNet [27]. Moreover, in that
study, AlexNet had the smallest number of layers but the
best score, and both precision and Jaccard index tended to
decrease as the number of middle layers increased. Deep-
layer networks require sufficient training data to learn
features. The original data number in our study was 450
cases, while the original data numbers in the studies carried
out by Saikia et al. [26] and Lee et al. [27] were 212 and
80 cases, respectively. Thus, when the number of cases is
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small, networks with shallow layers may be more suitable for
appropriate learning of features than networks with deep lay-
ers. In other words, it is necessary to use a suitable network
for a given dataset.

In our study, the precision and Jaccard indices of the
pituitary region were the lowest of all regions in all six net-
works. The pituitary region is the smallest visible organ and
constitutes the lowest percentage of pixels in the image. Pre-
vious studies have reported similar results. Mlynarski et al.
adapted the U-Net network to their dataset and segmented
eight regions: eye, lens, optic nerve, optic chiasm, pituitary
gland, hippocampus, brainstem, and brain (including cere-
brum, cerebellum, and brainstem). Although the comparison
is not straightforward because segmentation in that study
was based on 3D axial images, the region with the highest
Dice score was the brain (including the cerebrum, cerebel-
lum, and brainstem), at 0.97. The smallest region, the pitui-
tary gland, had the lowest Dice score at 0.58 [7]. Therefore,
the pituitary gland region is apparently more susceptible
to false positives and false negatives than other regions. In
addition, accurate region segmentation is more difficult if
the target is smaller, and methods should be improved to
address this limitation.

In this study, segmentation of midsagittal brain MRI
scans could extract the approximate contours and regions
of organs from 2D images. This method cannot be applied to
volume measurement and is not suitable for computer-aided
diagnosis, but it is straightforward and can deliver general
2D positional information within a short time. Based on the
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data, calculation times, and Jaccard indices obtained in this
study, segmentation from 2D images can be considered a
viable and effective approach for clinical use. Just as Rohini
et al. applied brainstem segmentation to the diagnosis of
Alzheimer’s disease [6], simultaneous segmentation will
enable automatic evaluation of pituitary signals and abnor-
malities in important organs such as the brainstem and cor-
pus callosum.

All datasets used in our study were open database images,
and we did not perform evaluations using clinical images.
The accuracy of deep learning is strongly affected by the
image quality of the dataset; therefore, testing on clinical
images could yield lower accuracy. We used 450 images
in this study, but more images should be used to eliminate
bias due to the lack of datasets. In addition, it is necessary
to investigate in more detail why U-Net, which produced
acceptable results in previous studies, did not behave as
expected in this study.

5 Conclusion

SegNet with the VGG16-weighting factor provided supe-
rior automatic segmentation of organs (cerebrum, cerebel-
lum, corpus callosum, brainstem, and pituitary gland) on
brain sagittal T1-weighted images. Our study demonstrated
a network that appears to be the most suitable for segment-
ing organs from 2D images of midsagittal brain slices. This
finding may enable future automatic evaluation of important
organs depicted in sagittal images. In addition, we acquired
new knowledge facilitating organ segmentation in 2D image
slices versus segmentation in 3D images.
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